neve
domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init
action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/mathze5/public_html/learnermath.com/wp-includes/functions.php on line 6114Before learning about complex numbers, it’s key to learn specifically about imaginary numbers first, including the symbol for imaginary numbers.\n
\nComplex and imaginary numbers aren’t quite exactly the same thing, but they are best introduced together in Math.<\/p>\n
\n<\/a>\n\n\n\nWhat is an Imaginary Number?<\/span><\/h2>\n\n\n\nImaginary numbers appear when we are to deal with the square root of a negative number.\n
\nNow normally we think that we can’t have a square root of a negative number, because a number multiplied by itself, either negative or positive, results in a positive number.\n
\nFor example, 3<\/b> × 3<\/b> = 9<\/b> , –3<\/b> × –3<\/b> = 9<\/b> etc.\n
\nSo \\bf{\\sqrt{9}}<\/span> = +<\/u> 3<\/b>.\n
\nBut we don’t seem to be able to find a result for \\bf{\\sqrt{{\\text{-}}9}}<\/span>.\n
\nThis is where imaginary numbers come in.\n
\n<\/a>\n\n\n\nSymbol for Imaginary Numbers<\/span><\/h3>\n\n\n\nThere is a special number we can use, represented by the letter i<\/i><\/font><\/font>.\n
\nWhich has the value: i<\/i><\/b><\/font> = \\bf{\\sqrt{{\\text{-}}1}}<\/span>.\n
\nThis i<\/i><\/font><\/font> now enables us to find \\bf{\\sqrt{{\\text{-}}9}}<\/span>.\n
\n\\bf{\\sqrt{{\\text{-}}9}} \\space = \\space {\\sqrt{9 \\times {\\text{-}}1}} \\space = \\space {\\sqrt{9}}{\\sqrt{{\\text{-}}1}}<\/span> = <\/font>\\bf{\\sqrt{9}}<\/span>i<\/i><\/b><\/font>\n
\n\\bf{\\sqrt{9}}<\/span>i<\/i><\/b><\/font> = 3<\/b>i<\/i><\/b><\/font> , –3<\/b>i<\/i><\/b><\/font>\n
\nGeneral Case: {\\sqrt{{\\text{-}}a}}<\/span> = {\\sqrt{a}}<\/span>i<\/i><\/b><\/font>\n
\nThough sometimes we can write as i<\/i><\/b><\/font>{\\sqrt{a}}<\/span>, which is also perfectly fine as the order doesn’t matter.<\/font>\n
\n<\/a>\n\n\n\nPowers of Imaginary Numbers:<\/span><\/h3>\n\n\n\nSomething interesting happens when we raise i<\/i><\/font><\/font> to a power and multiply it with itself.\n
\ni<\/i><\/b><\/font><\/font>1<\/font><\/sup><\/sup> = i<\/i><\/b><\/font><\/font>\n
\ni<\/i><\/b><\/font><\/font>2<\/font><\/sup><\/sup> = i<\/i><\/b><\/font><\/font> × i<\/i><\/b><\/font><\/font> = \\bf{\\sqrt{{\\text{-}}1}}\\times{\\sqrt{{\\text{-}}1}}<\/span> = –1<\/b> \n
\ni<\/i><\/b><\/font><\/font>3<\/font><\/sup><\/sup> = –1<\/b> × i<\/i><\/b><\/font><\/font> = –i<\/i><\/b><\/font><\/font>\n
\ni<\/i><\/b><\/font><\/font>4<\/font><\/sup><\/sup> = –i<\/i><\/b><\/font><\/font> × i<\/i><\/b><\/font><\/font> = –\\bf{\\sqrt{{\\text{-}}1}}\\times{\\sqrt{{\\text{-}}1}}<\/span> = -( (\\bf{\\sqrt{{\\text{-}}1}}\\times{\\sqrt{{\\text{-}}1}}<\/span> ) = -( –1<\/b> ) = 1<\/b>\n
\nSo we have:\n
\ni<\/i><\/b><\/font><\/font>1<\/font><\/sup><\/sup> = i<\/i><\/b><\/font><\/font> , i<\/i><\/b><\/font><\/font>2<\/font><\/sup><\/sup> = –1<\/b> , i<\/i><\/b><\/font><\/font>3<\/font><\/sup><\/sup> = –i<\/i><\/b><\/font><\/font> , i<\/i><\/b><\/font><\/font>4<\/font><\/sup><\/sup> = 1<\/b>.\n
\nWhat’s interesting is that this pattern continues over and over every 4 powers.\n
\nSo i<\/i><\/b><\/font><\/font>5<\/font><\/sup><\/sup> = i<\/i><\/b><\/font><\/font> , i<\/i><\/b><\/font><\/font>6<\/font><\/sup><\/sup> = –1<\/b> ……. and so on<\/font>.\n
\n<\/a>\n\n\n\n
\n\n\n\nComplex and Imaginary Numbers<\/span><\/h2>\n\n\n\n
\nImaginary numbers in Math enable us to create what are known as ‘complex numbers’.\n
\nWhich are numbers made up of a real part and an imaginary part.\n
\n\n\n\n