Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the neve domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/mathze5/public_html/learnermath.com/wp-includes/functions.php on line 6114

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893
{"id":1137,"date":"2023-09-12T15:46:32","date_gmt":"2023-09-12T15:46:32","guid":{"rendered":"http:\/\/www.learnermath.com\/?page_id=1137"},"modified":"2024-06-20T12:14:18","modified_gmt":"2024-06-20T12:14:18","slug":"factoring-with-synthetic-division","status":"publish","type":"page","link":"https:\/\/www.learnermath.com\/factoring-with-synthetic-division","title":{"rendered":"Polynomial Factoring with Synthetic Division
and Solving"},"content":{"rendered":"\n
\n

A common and effective approach to solving polynomials that we have focused on a lot thus far is using synthetic division<\/i><\/a>.\n

\nThis page will look at further examples of factoring with synthetic division and solving with polynomials of degree 3 and higher.<\/p>\n


\n\n\n\n

Factoring with Synthetic Division and Solving,
Examples<\/span><\/h2>\n\n\n\n

\n(1.1) <\/i><\/b><\/font><\/font><\/font><\/u>\n

\nShow that  (x + 1)<\/span>  is a factor of   f(x) = 3x^3 \\space {\\text{–}} \\space 7x^2 \\space {\\text{–}} \\space 18x \\space {\\text{–}} \\space 8<\/span>,\n
\nthen factorise fully and solve for  f(x) = 0<\/span>.\n

\nSolution<\/i>   <\/b><\/font><\/font><\/u><\/font>\n

\nx + 1 \\space = \\space 0 \\space => \\space x = {\\text{-}}1<\/span><\/font>\n

\n\n\n\n
\"Factoring<\/figure>\n\n\n\n
\nA remainder of  0  shows that  (x + 1)<\/span>  is a factor,\n
\nand we can now factorise fully and solve.\n

\n(3x^2 \\space {\\text{–}} \\space 10x \\space {\\text{–}} \\space 8)(x + 1)<\/span>\n

\nThe larger quadratic turns out to factorise nicely into two neat binomials.<\/font>\n

\n(3x \\space {\\text{–}} \\space \\space \\space \\space )(x \\space {\\text{–}} \\space \\space \\space \\space )(x + 1)<\/span>    =>    (3x + 2)(x \\space {\\text{–}} \\space 4)(x + 1)<\/span>\n

\nSetting the factors equal to  0  and solving will give us the solutions.<\/font>\n

\n3x + 2 = 0 \\space \\space {\\scriptsize{=>}} \\space \\space x = {\\text{-}}\\frac{2}{3} \\space \\space \\space , \\space \\space \\space x \\space {\\text{–}} \\space 4 = 0 \\space \\space {\\scriptsize{=>}} \\space \\space x = 4<\/span>\n

\nx + 1 = 0 \\space \\space {\\scriptsize{=>}} \\space \\space x = {\\text{-}}1<\/span>\n

\nThe solutions of    3x^3 \\space {\\text{–}} \\space 7x^2 \\space {\\text{–}} \\space 18x \\space {\\text{–}} \\space 8<\/span>    are     x = {\\text{-}}1 \\space , \\space {\\text{-}}\\frac{2}{3} \\space , \\space 4<\/span>.\n




\n(1.2) <\/i><\/b><\/font><\/font><\/font><\/u>\n

\nIf  (x \\space {\\text{–}} \\space 2)<\/span>  is a factor of   f(x) = x^3 + 3x^2 \\space {\\text{–}} \\space 4x \\space {\\text{–}} \\space 12<\/span>.\n

\nUse synthetic division to find the other two factors, and subsequently all roots.\n

\nSolution<\/i>   <\/b><\/font><\/font><\/u><\/font>\n

\nWe’re given the information that  (x {\\text{–}} \\space 2)<\/span> is a factor, so can procced straight away with synthetic division without having to make any guesses at values to try.<\/font>\n

\nx \\space {\\text{–}} \\space 2 \\space = \\space 0 \\space => \\space x = 2<\/span><\/font>\n

\n\n\n\n
\"Factoring<\/figure>\n\n\n\n
\nA remainder of  0  is obtained as expected,\n
\nand we can now factorise fully and find the roots\/solutions.\n

\n(x^2 + 5x + 6)(x \\space {\\text{–}} \\space 2)<\/span>\n

\nThe larger quadratic turns out to factorise nicely into two neat binomials.<\/font>\n

\n(x \\space {\\text{–}} \\space \\space \\space \\space )(x \\space {\\text{–}} \\space \\space \\space \\space )(x \\space {\\text{–}} \\space 2)<\/span>    =>    (x + 3)(x + 2)(x \\space {\\text{–}} \\space 2)<\/span>\n

\nSetting the factors equal to  0  and solving will give us the solutions.<\/font>\n

\nx + 3 = 0 \\space \\space {\\scriptsize{=>}} \\space \\space x = {\\text{-}}3 \\space \\space \\space , \\space \\space \\space x \\space {\\text{–}} \\space 2 = 0 \\space \\space {\\scriptsize{=>}} \\space \\space x = 2<\/span>\n

\nx + 2 = 0 \\space \\space {\\scriptsize{=>}} \\space \\space x = {\\text{-}}2<\/span>\n

\nThe solutions of    f(x) = x^3 + 3x^2 \\space {\\text{–}} \\space 4x \\space {\\text{–}} \\space 12<\/span>    are     x = {\\text{-}}3 \\space , \\space {\\text{-}}2 \\space , \\space 2<\/span>.\n




\n(1.3) <\/i><\/b><\/font><\/font><\/font><\/u>\n

\nFind the roots\/zeros of   h(x) = x^3 \\space {\\text{–}} \\space 3x^2 \\space {\\text{–}} \\space 10x + 24<\/span>.\n

\nSolution<\/i>   <\/b><\/font><\/font><\/u><\/font>\n

\nSometimes we aren’t given any factors or roots to start with.\n

\nWe can apply the rational roots test, but we can also just proceed with a few basic initial guesses to find a first factor and root.<\/font>\n

\nh(1) = 1^3 \\space {\\text{–}} \\space 3(1)^2 \\space {\\text{–}} \\space 10(1) + 24 \\space = \\space 1 \\space {\\text{–}} \\space 3 \\space {\\text{–}} \\space 10 + 24 \\space = \\space 13<\/span>\n

\nh({\\text{-}}1) = ({\\text{-}}1)^3 \\space {\\text{–}} \\space 3({\\text{-}}1)^2 \\space {\\text{–}} \\space 10({\\text{-}}1) + 24 \\space = \\space {\\text{-}}1 \\space {\\text{–}} \\space 3 + 10 + 24 \\space = \\space 13<\/span>\n

\nh(2) = 2^3 \\space {\\text{–}} \\space 3(2)^2 \\space {\\text{–}} \\space 10(2) + 24 \\space = \\space 8 \\space {\\text{–}} \\space 12 \\space {\\text{–}} \\space 20 + 24 \\space = \\space 0<\/span>\n

\n2 is a root, so with that information we can proceed with finding the other roots.<\/font>\n\n\n\n
\"Factoring<\/figure>\n\n\n\n
\nA remainder of  0  is obtained as expected,\n
\nand we can now factorise fully and find the roots\/solutions.\n

\n(x^2 \\space {\\text{–}} \\space x \\space {\\text{–}} \\space 12)(x \\space {\\text{–}} \\space 2)<\/span>\n

\n(x \\space {\\text{–}} \\space \\space \\space \\space )(x \\space {\\text{–}} \\space \\space \\space \\space )(x \\space {\\text{–}} \\space 2)<\/span>    =>    (x + 3)(x \\space {\\text{–}} \\space 4)(x \\space {\\text{–}} \\space 2)<\/span>\n

\nx + 3 = 0 \\space \\space {\\scriptsize{=>}} \\space \\space x = {\\text{-}}3 \\space \\space \\space , \\space \\space \\space x \\space {\\text{–}} \\space 4 = 0 \\space \\space {\\scriptsize{=>}} \\space \\space x = 4<\/span>\n

\nThe solutions of    h(x) = x^3 \\space {\\text{–}} \\space 3x^2 \\space {\\text{–}} \\space 10x + 24<\/span>    are     x = {\\text{-}}3 \\space , \\space 2 \\space , \\space 4<\/span>.\n




\n(1.4) <\/i><\/b><\/font><\/font><\/font><\/u>\n

\nShow that  (x + 2)<\/span>  is a factor of   f(x) = x^4 + 8x^3 + 17x^2 \\space {\\text{–}} \\space 2x \\space {\\text{–}} \\space 24<\/span>.\n

\nHence factorise fully and solve.\n

\nSolution<\/i>   <\/b><\/font><\/font><\/u><\/font>\n

\nf(x)<\/span>  here is a polynomial of degree  4, so there are  4  factors and solutions.<\/span>\n

\nFirstly we deal with showing that  (x + 2)<\/span>  is a factor.\n

\nf({\\text{-}}2) = ({\\text{-}}2)^4 + 8({\\text{-}}2)^3 + 17({\\text{-}}2)^2 \\space {\\text{–}} \\space 2({\\text{-}}2) \\space {\\text{–}} \\space 24<\/span>\n

\n= 16 \\space {\\text{–}} \\space 64 + 68 + 4 \\space {\\text{–}} \\space 24 \\space = \\space 0<\/span>\n

\n(x + 2)<\/span>  is a factor, with  -2<\/b>  being a zero.\n
\nWith that information we can proceed with finding the other roots.<\/font><\/font>\n

\n\n\n\n
\"Factoring<\/figure>\n\n\n\n
\nA remainder of  0  is obtained as expected,\n
\nwe can now look to factorise further.\n


\n(x + 2)(x^3 + 6x^2 + 5 \\space {\\text{–}} \\space 12)<\/span>\n

\nWe can proceed with factoring with synthetic division for  x^3 + 6x^2 + 5 \\space {\\text{–}} \\space 12<\/span>,  but we don’t know any exact zeros\/roots to start with.\n

\nThe
rational roots theorem<\/i><\/a> can help us find values to try.\n

\nThough sometimes we can try some basic values first, as we may get lucky and find a zero\/root.\n
\nA good value to try initially is usually  0  or  1.\n

\n\n\n\n
\"Factoring<\/figure>\n\n\n\n
\nFactoring further.\n

\nSuccess on this occasion, we have quickly found another zero\/root.\n
\nIt doesn’t always work out like this, but it’s nice when it does.\n

\nNow we can factor fully and solve.\n

\n(x^2 + 7x + 12)(x \\space {\\text{–}} \\space 1)(x + 2)<\/span>\n

\n(x \\space {\\text{–}} \\space \\space \\space \\space )(x \\space {\\text{–}} \\space \\space \\space \\space )(x \\space {\\text{–}} \\space 1)(x + 2)<\/span>    =>    (x + 3)(x + 4)(x \\space {\\text{–}} \\space 1)(x + 2)<\/span>\n

\nx + 3 = 0 \\space \\space {\\scriptsize{=>}} \\space \\space x = {\\text{-}}3 \\space \\space \\space , \\space \\space \\space x + 4 = 0 \\space \\space {\\scriptsize{=>}} \\space \\space x = {\\text{-}}4<\/span>\n

\nx \\space {\\text{–}} \\space 1 = 0 \\space \\space {\\scriptsize{=>}} \\space \\space x = 1 \\space \\space \\space , \\space \\space \\space x + 2 = 0 \\space \\space {\\scriptsize{=>}} \\space \\space x = {\\text{-}}2<\/span>\n


\nThe solutions of    f(x) = x^4 + 8x^3 + 17x^2 \\space {\\text{–}} \\space 2x \\space {\\text{–}} \\space 24<\/span>    are     x = {\\text{-}}4 \\space , \\space {\\text{-}}3 \\space , \\space {\\text{-}}2 \\space , \\space 1<\/span>.\n





\n\n\n
    \n
  1. \n\nHome<\/span><\/a>\n\n<\/li>\n\u00a0\u203a\n
  2. \n\nAlgebra 2<\/span><\/a>\n\n<\/li>\n \u203a\nSynthetic Division Factoring\n<\/ol>\n\n<\/font><\/font>\n\n\n\n
    \n\n\n\n


    \n
    Return to TOP of page<\/b> <\/font><\/a> <\/center>\n


    \n