Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the neve domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/mathze5/public_html/learnermath.com/wp-includes/functions.php on line 6114

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893
{"id":1056,"date":"2023-09-11T12:04:10","date_gmt":"2023-09-11T12:04:10","guid":{"rendered":"http:\/\/www.learnermath.com\/?page_id=1056"},"modified":"2024-10-04T12:25:18","modified_gmt":"2024-10-04T12:25:18","slug":"multiplying-matrices-examples","status":"publish","type":"page","link":"https:\/\/www.learnermath.com\/multiplying-matrices-examples","title":{"rendered":"Multiplying Matrices Examples<br>Matrix Multiplication Introduction"},"content":{"rendered":"\n
\n
\n On this Page<\/b>:<\/u> \n
\n  1. Multiplying Matrices Together<\/a>\n
\n\t  2.
Matrix Multiplication Steps<\/a>\n\t
\n\t  3.
Multiplying by the Identity Matrix<\/a>\n
\n  4.
Matrix Multiplication Properties<\/a><\/font>\n <\/div>\n
\n

Matrix multiplication becomes a bit more involved when we look at multiplying matrices examples where matrices are multiplied together.\n

\nBut it’s usually quite straightforward when we just want to multiply a matrix by a single number.<\/p>\n
\n2<\/font> × \\begin{bmatrix} 4 & 1 & 2 \\\\ 3 & 5 & 1 \\end{bmatrix}<\/span>   =   \\begin{bmatrix} 2\\times4 & 2\\times1 & 2\\times2 \\\\ 2\\times3 & 2\\times5 & 2\\times1 \\end{bmatrix}<\/span>   =   \\begin{bmatrix} 8 & 2 & 4 \\\\ 6 & 10 & 2 \\end{bmatrix}<\/span>\n

\n

We just multiply each element of the matrix by the number.\n


\nThings are a little bit more complex when we want to multiply matrices together however.<\/p>\n


\n
<\/a>\n\n\n\n

Multiplying Matrices Examples<\/span>
Same Size Matrix<\/span><\/h2>\n\n\n\n

We can look at the case of multiplying a 2 x 2<\/font> matrix by another 2 x 2 <\/font> matrix.<\/p>\n\\begin{bmatrix} a_{11} & a_{12} \\\\ a_{21} & a_{22} \\end{bmatrix}<\/span>  ×  \\begin{bmatrix} b_{11} & b_{12} \\\\ b_{21} & b_{22} \\end{bmatrix}<\/span>\n

\n=   \\begin{bmatrix} a_{11}b_{11}+a_{12}b_{21} & a_{11}b_{12}+a_{12}b_{22} \\\\ a_{21}b_{11}+a_{22}b_{21} & a_{21}b_{12}+a_{22}b_{22} \\end{bmatrix}<\/span> \n


\nNow to see an example using numbers, with  .<\/b>  representing multiplication, this looks like:\n

\n\\begin{bmatrix} 1 & 3 \\\\ {\\text{-}}4 & 1 \\end{bmatrix}<\/span>  ×  \\begin{bmatrix} 5 & 2 \\\\ 1 & 3 \\end{bmatrix}<\/span>\n

\n=   \\begin{bmatrix} 1.5+3.1 & 1.2+3.3 \\\\ {\\text{-}}4.5+1.1 & {\\text{-}}4.2+1.3 \\end{bmatrix}<\/span>   =   \\begin{bmatrix} 8 & 11 \\\\ {\\text{-}}19 & {\\text{-}}5 \\end{bmatrix}<\/span>\n


\n

The result of multiplying two 2 x 2<\/font> matrices together was another 2 x 2<\/font> matrix. \n


\nBut generally the size of the new matrix resulting from the multiplication, depends on how many rows and columns are in the matrices being multiplied. \n

\nAlong with the fact that matrices can only be multiplied together if one matrix has the same number of columns as the other does rows.\n

\nAs such square matrices of the same size can always be multiplied together.<\/p>\n


\n
<\/a>\n
\n\n\n\n


\n\n\n\n

Matrix Order of Multiplication<\/span><\/h2>\n\n\n\n

It’s important to pay attention to order when learning matrix multiplication.\n

\nAs if you have two matrices  A<\/font>  and  B<\/font>,  generally   A×B<\/font> ≠ B×A<\/font>.\n


\nWe can look at the multiplication of two different  2 x 2<\/font>  matrices together.<\/p>\n\\begin{bmatrix} 1 & 2 \\\\ 0 & 1 \\end{bmatrix}<\/span>   and   \\begin{bmatrix} 3 & 0 \\\\ 1 & 4 \\end{bmatrix}<\/span>\n


\n=>    \\begin{bmatrix} 1 & 2 \\\\ 0 & 1 \\end{bmatrix}<\/span>  ×  \\begin{bmatrix} 3 & 0 \\\\ 1 & 4 \\end{bmatrix}<\/span>    =    \\begin{bmatrix} 1.3 + 2.1 & 1.0 + 2.4 \\\\ 0.3 + 1.1 & 0.0 + 1.4 \\end{bmatrix}<\/span>    =    \\begin{bmatrix} 5 & 8 \\\\ 1 & 4 \\end{bmatrix}<\/span>\n

\n=>    \\begin{bmatrix} 3 & 0 \\\\ 1 & 4 \\end{bmatrix}<\/span>  ×  \\begin{bmatrix} 1 & 2 \\\\ 0 & 1 \\end{bmatrix}<\/span>    =    \\begin{bmatrix} 3.1 + 0.0 & 3.2 + 0.1 \\\\ 1.1 + 4.0 & 1.2 + 4.1 \\end{bmatrix}<\/span>    =    \\begin{bmatrix} 3 & 6 \\\\ 1 & 6 \\end{bmatrix}<\/span>\n



\n( When practicing how to do matrix multiplication it’s handy to be able to quickly check your answers.\n

\nA handy matrix multiplication calculator is available to use at the
matrix reshish<\/i><\/a> website. )\n





\n
<\/a>\n\n\n\n


\n\n\n\n

Identity Matrix Multiplication<\/span><\/h2>\n\n\n\n
\n

A specific case to consider when learning how to do matrix multiplication, is that multiplication of a matrix with the identity matrix, regardless of order, results in the same matrix.<\/p>\n
\n\\begin{bmatrix} 1 & 0 \\\\ 0 & 1 \\end{bmatrix}<\/span> × \\begin{bmatrix} 4 & 3 \\\\ 1 & 9 \\end{bmatrix}<\/span>   =   \\begin{bmatrix} 4+0 & 3+0 \\\\ 0+1 & 0+9 \\end{bmatrix}<\/span>\n

\n=   \\begin{bmatrix} 4 & 3 \\\\ 1 & 9 \\end{bmatrix}<\/span>\n


\n\\begin{bmatrix} 4 & 3 \\\\ 1 & 9 \\end{bmatrix}<\/span> × \\begin{bmatrix} 1 & 0 \\\\ 0 & 1 \\end{bmatrix}<\/span>   =   \\begin{bmatrix} 4+0 & 0+3 \\\\ 1+0 & 0+9 \\end{bmatrix}<\/span>\n

\n=   \\begin{bmatrix} 4 & 3 \\\\ 1 & 9 \\end{bmatrix}<\/span>\n


\nThis example was just with a simple ( 2 × 2 ) matrix, but the result will be the same with larger matrices also.\n





\n
<\/a>\n\n\n\n


\n\n\n\n

Properties of Matrix Multiplication<\/span><\/h2>\n\n\n\n
\n

To round off this how to do matrix multiplication page we’ll display a short list of properties of matrix multiplication as a summary.<\/p>\n
\n1)<\/font><\/b>   A<\/font> × ( BC<\/font> )   =   AB<\/font> × C<\/font>         ( associative property )\n

\n2)<\/font><\/b>   cA<\/font> × B<\/font>   =   A<\/font> × cB<\/font>         ( where c<\/font> is a constant )\n

\n3)<\/font><\/b>   AI<\/font><\/font>  =  A<\/font>     ,     I<\/font>A<\/font>  =  A<\/font>         ( where I<\/font><\/font> is the identity matrix )\n





\n\n\n

    \n
  1. \n\nHome<\/span><\/a>\n\n<\/li>\n\u00a0\u203a\n
  2. \n\nAlgebra 2<\/span><\/a>\n\n<\/li>\n \u203a\nMatrix Multiplying\n<\/ol>\n\n<\/font><\/font>\n\n\n\n
    \n\n\n\n


    \n
    Return to TOP of page<\/b> <\/font><\/a> <\/center>\n


    \n