neve
domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init
action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/mathze5/public_html/learnermath.com/wp-includes/functions.php on line 6114The exponential function and the logarithmic function and their relationship were featured on the exponential function and logarithms<\/i><\/a> introduction page.<\/p>\n
\nWhen dealing with real numbers.\n
\nLogarithmic Function. f(x) \\space {\\small{=}} \\space{\\tt{log}}_a (x)<\/span><\/font> , a > 0 \\space \\space , \\space \\space a \\space {\\cancel{=}} \\space 1 \\space \\space , \\space \\space x > 0<\/span>.\n
\nExponential function. f(x) = a^x<\/span><\/font>, a > 0<\/span>\n
\nThe functions are inverses of each other.\n
\n{\\tt{log}}_a (a^x) \\space {\\small{=}} \\space x<\/span><\/font> => a^{{\\tt{log}}_a (x)} \\space {\\small{=}} \\space x<\/span><\/font> \n
\nHere we will look at some logarithmic function graph examples. Observing the standard form of the graphs, and how they differ on a cartesian axis.\n
\n<\/a>\n
\n\n\n\n
\n\n\n\nLogarithmic Function Graph
Examples<\/span><\/h2>\n\n\n\n
\nWhen we have, f(x) \\space {\\small{=}} \\space{\\tt{log}}_a (x)<\/span><\/font> , a > 0 \\space \\space , \\space \\space a \\space {\\cancel{=}} \\space 1 \\space \\space , \\space \\space x > 0<\/span>.\n
\nThe shape of the graph will be influenced by a<\/i><\/font><\/font>.\n
\n\n\n\na > 1<\/span><\/h3>\n\n\n\nLet’s firstly look at the case of, a > 1<\/span>.\n
\nf(x) \\space {\\small{=}} \\space {\\tt{log}}_2 (x)<\/span><\/font>\n
\nWe can obtain some points on the graph.\n
\nf(\\frac{1}{4}) \\space {\\small{=}} \\space {\\tt{log}}_2 (\\frac{1}{4}) \\space {\\small{=}} \\space {\\text{-}}2 \\space \\space \\space \\space \\space \\space \\space \\space {\\footnotesize{( 2^{{\\text{-}}2} = \\frac{1}{4} )}}<\/span><\/font>\n
\nf(\\frac{1}{2}) \\space {\\small{=}} \\space {\\tt{log}}_2 (\\frac{1}{2}) \\space {\\small{=}} \\space {\\text{-}}1 \\space \\space \\space \\space \\space \\space \\space \\space {\\footnotesize{( 2^{{\\text{-}}1} = \\frac{1}{2} )}}<\/span><\/font>\n
\nf(1) \\space {\\small{=}} \\space {\\tt{log}}_2 (1) \\space {\\small{=}} \\space 0 \\space \\space \\space \\space \\space \\space \\space \\space \\space \\space {\\footnotesize{( 2^0 = 1 )}}<\/span><\/font>\n
\nf(2) \\space {\\small{=}} \\space {\\tt{log}}_2 (2) \\space {\\small{=}} \\space 1 \\space \\space \\space \\space \\space \\space \\space \\space \\space \\space {\\footnotesize{( 2^1 = 2 )}}<\/span><\/font>\n
\nf(4) \\space {\\small{=}} \\space {\\tt{log}}_2 (4) \\space {\\small{=}} \\space 2 \\space \\space \\space \\space \\space \\space \\space \\space \\space \\space {\\footnotesize{( 2^2 = 4 )}}<\/span><\/font>\n
\nSo we have found the points (\\frac{1}{4},{\\text{-}}2) , (\\frac{1}{2},{\\text{-}}1) , (1,0) , (2,1) , (4,2)<\/span><\/font>.\n
\nThis information can now help in drawing the graph for f(x) \\space {\\small{=}} \\space {\\tt{log}}_2 (x)<\/span><\/font>.\n
\n\n\n\n