Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the neve domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/mathze5/public_html/learnermath.com/wp-includes/functions.php on line 6114

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/mathze5/public_html/learnermath.com/wp-includes/functions.php:6114) in /home/mathze5/public_html/learnermath.com/wp-includes/rest-api/class-wp-rest-server.php on line 1893
{"id":1005,"date":"2023-09-10T15:28:49","date_gmt":"2023-09-10T15:28:49","guid":{"rendered":"http:\/\/www.learnermath.com\/?page_id=1005"},"modified":"2024-10-07T12:36:42","modified_gmt":"2024-10-07T12:36:42","slug":"logarithms-change-of-base-formula","status":"publish","type":"page","link":"https:\/\/www.learnermath.com\/logarithms-change-of-base-formula","title":{"rendered":"Simplifying Logarithms, Logarithm Rules<br>Logarithms Change of Base Formula"},"content":{"rendered":"\n
\n
\n
\n On this Page<\/b>:<\/u> \n
\n  1. Logarithm Rules<\/b><\/a>\n
\n\t  2.
Examples<\/a>\n\t
\n\t  3.
Change of Base Formula<\/a><\/font>\n <\/div>\n
\n

Logarithms and examples of working with logarithms were introduced on the logarithms<\/i><\/a> page, and the exponential and logarithmic functions examples<\/i><\/a> page.\n

\nHere on this how to simplify logarithms page we look further at situations of manipulating and solving where logarithms are present.\n
\nIncluding the logarithms change of base formula.\n


\nThere are some rules of logarithms that can be used in certain examples where we want to express or solve for an unknown. These rules actually follow on from the exponent rules seen on the
exponents in algebra<\/i><\/a> page.\n

\nWe can firstly recap the key rules for exponents.<\/p>\n

\n\n\n\n

Exponent Rules:<\/span><\/h2>\n\n\n\n
\n–<\/b><\/font>     a^m \\times a^n \\space {\\small{=}} \\space a^{m + n}<\/span><\/font>\n

\n–<\/b><\/font>     {\\Large{\\frac{a^m}{a^n}}} \\space {\\small{=}} \\space a^{m {\\text{--}} n}<\/span><\/font>\n

\n–<\/b><\/font>     (a^m)^n \\space {\\small{=}} \\space a^{mn}<\/span><\/font>\n

\n–<\/b><\/font>     a^0 \\space {\\small{=}} \\space 1<\/span><\/font>     ,     a^1 \\space {\\small{=}} \\space a<\/span><\/font>\n


\nThe rules for logarithms follow in a similar pattern.\n

\n
<\/a>\n
\n\n\n\n

Logarithm Rules:<\/span><\/h2>\n\n\n\n
\n–<\/b><\/font>     {\\tt{log}}_a (mn) \\space {\\small{=}} \\space {\\tt{log}}_a (m) + {\\tt{log}}_a (n)<\/span><\/font>\n

\n–<\/b><\/font>     {\\tt{log}}_a (\\frac{m}{n}) \\space {\\small{=}} \\space {\\tt{log}}_a (m) \\space {\\text{--}} \\space {\\tt{log}}_a (n)<\/span><\/font>\n

\n–<\/b><\/font>     {\\tt{log}}_a (x^n) \\space {\\small{=}} \\space n \\space {\\tt{log}}_a (x)<\/span><\/font>\n

\n–<\/b><\/font>     {\\tt{log}}_a (a) \\space {\\small{=}} \\space 1<\/span><\/font>     ,     {\\tt{log}}_a (1) \\space {\\small{=}} \\space 0<\/span><\/font>\n





\n
<\/a>\n
\n\n\n\n
\n\n\n\n

Logarithm Rules Examples<\/span><\/h2>\n\n\n\n

\n(1.1) <\/i><\/b><\/font><\/u><\/font><\/font>\n

\na) <\/i><\/b><\/font><\/font><\/font><\/u>   Write   {\\tt{log}} (2a)<\/span><\/font>   as the sum of two logs.\n

\nSolution<\/i>   <\/b><\/font><\/font><\/u><\/font>\n

\n{\\tt{log}} (2a) \\space {\\small{=}} \\space {\\tt{log}}(2) + {\\tt{log}}(a)<\/span><\/font>\n

\nb) <\/i><\/b><\/font><\/font><\/font><\/u>   Write   {\\tt{log}}b^4<\/span><\/font>   as a multiple.\n

\nSolution<\/i>   <\/b><\/font><\/font><\/u><\/font>\n

\n{\\tt{log}}b^4 \\space {\\small{=}} \\space \\space 4\\space{\\tt{log}}b<\/span><\/font>\n




\n(1.2) <\/i><\/b><\/font><\/u><\/font><\/font>\n

\nWe will show all of the following written as the log of a single number.\n

\na) <\/i><\/b><\/font><\/font><\/font><\/u>    {\\tt{log}} (8) \\space {\\text{--}} \\space {\\tt{log}} (4)<\/span><\/font>     =>     {\\tt{log}} (8) \\space {\\text{--}} \\space {\\tt{log}} (4) \\space {\\small{=}} \\space {\\tt{log}} (\\frac{8}{4}) \\space {\\small{=}} \\space {\\tt{log}} (2)<\/span><\/font>\n

\nb) <\/i><\/b><\/font><\/font><\/font><\/u>    3{\\tt{log}}4<\/span><\/font>     =>     3{\\tt{log}}4 \\space {\\small{=}} \\space {\\tt{log}}4^3 \\space {\\small{=}} \\space {\\tt{log}}64<\/span><\/font>\n

\nc) <\/i><\/b><\/font><\/font><\/font><\/u>    {\\text{-}}2{\\tt{log}}5<\/span><\/font>     =>     {\\text{-}}2{\\tt{log}}5 \\space {\\small{=}} \\space {\\tt{log}}5^{{\\text{-}}2} \\space {\\small{=}} \\space {\\tt{log}} {{\\Large{\\frac{1}{5^2}}}} \\space {\\small{=}} \\space {\\tt{log}} {{\\Large{\\frac{1}{25}}}}<\/span><\/font>\n

\nd) <\/i><\/b><\/font><\/font><\/font><\/u>    2{\\tt{log}}2 \\space {\\text{--}} \\space 3{\\tt{log}}3<\/span><\/font>     =>     2{\\tt{log}}2 \\space {\\text{--}} \\space 3{\\tt{log}}3 \\space {\\small{=}} \\space {\\tt{log}}2^2 \\space {\\text{--}} \\space {\\tt{log}}3^3<\/span> \\space {\\small{=}} \\space {\\tt{log}}4 \\space {\\text{--}} \\space {\\tt{log}}27 \\space {\\small{=}} \\space {\\tt{log}} \\frac{4}{27}<\/span><\/font>\n




\n(1.3) <\/i><\/b><\/font><\/u><\/font><\/font>\n

\nLike in examples (1.2), we will show all of the following written as the log of a single number.\n

\na) <\/i><\/b><\/font><\/font><\/font><\/u>    1 + {\\tt{log}}_3 (2)<\/span><\/font>     =>     1 + {\\tt{log}}_3 (2) \\space {\\small{=}} \\space {\\tt{log}}_3 (3) + {\\tt{log}}_3 (2) \\space {\\small{=}} \\space {\\tt{log}}_3 (2 \\times 3) \\space {\\small{=}} \\space {\\tt{log}}_3(6)<\/span><\/font>\n

\nb) <\/i><\/b><\/font><\/font><\/font><\/u>    2 + {\\tt{log}}_{10} (5)<\/span><\/font>     =>     2 + {\\tt{log}}_{10} (5) \\space {\\small{=}} \\space 2{\\tt{log}}_{10} (10) + {\\tt{log}}_{10} (5) \\space {\\small{=}} \\space {\\tt{log}}_{10}(10^2) + {\\tt{log}}_{10}(5)<\/span><\/font>\n

\n      {\\small{=}} \\space {\\tt{log}}_{10} (100) + {\\tt{log}}_{10} (5) \\space {\\small{=}} \\space {\\tt{log}}_{10} (100 \\times 5) \\space {\\small{=}} \\space {\\tt{log}}_{10}(500)<\/span><\/font>\n

\nc) <\/i><\/b><\/font><\/font><\/font><\/u>    1 + {\\tt{log}}_5 b<\/span><\/font>     =>     1 + {\\tt{log}}_5 b \\space {\\small{=}} \\space {\\tt{log}}_5 5 + {\\tt{log}}_5 b \\space {\\small{=}} \\space {\\tt{log}}_b (5 \\times b) \\space {\\small{=}} \\space {\\tt{log}}_5 5b<\/span><\/font>\n




\n(1.4) <\/i><\/b><\/font><\/u><\/font><\/font>\n

\nExpress   {\\tt{log}}_{10} (20)<\/span><\/font>   in terms of   {\\tt{log}}_{10} (2)<\/span><\/font>   and   {\\tt{log}}_{10} (5)<\/span><\/font>.\n

\nSolution<\/i>   <\/b><\/font><\/font><\/u><\/font>\n

\n{\\tt{log}}_{10} (20) \\space {\\small{=}} \\space {\\tt{log}}_{10} (4 \\times 5) \\space {\\small{=}} \\space {\\tt{log}}_{10} (4) + {\\tt{log}}_{10} (5)<\/span><\/font>\n

\n{\\small{=}} \\space {\\tt{log}}_{10} (2)^2 + {\\tt{log}}_{10} (5) \\space {\\small{=}} \\space 2{\\tt{log}}_{10} (2) + {\\tt{log}}_{10} (5)<\/span><\/font>\n




\n(1.5) <\/i><\/b><\/font><\/u><\/font><\/font>\n

\nSolve for x<\/span>:   {\\tt{log}}x + 2{\\tt{log}}2 \\space {\\small{=}} \\space {\\tt{log}}48<\/span><\/font>.\n

\nSolution<\/i>   <\/b><\/font><\/font><\/u><\/font>\n

\n{\\tt{log}}x + 2{\\tt{log}}2 \\space {\\small{=}} \\space {\\tt{log}}48<\/span><\/font>     =>     {\\tt{log}}x + {\\tt{log}}2^2 \\space {\\small{=}} \\space {\\tt{log}}48<\/span><\/font>     =>     {\\tt{log}}x + {\\tt{log}}4 \\space {\\small{=}} \\space {\\tt{log}}48<\/span><\/font>\n

\n=>    {\\tt{log}}4x \\space {\\small{=}} \\space {\\tt{log}}48<\/span><\/font>       ,       4x \\space {\\small{=}} \\space 48 \\space \\space , \\space \\space x \\space {\\small{=}} \\space 12<\/span><\/font>\n

\n



\n
<\/a>\n
\n\n\n\n
\n\n\n\n

Logarithms Change of Base Formula<\/span><\/h2>\n\n\n\n
\n

When learning how to simplify logarithms, there is a formula that can be very helpful when we wish to establish the value of a given logarithm.\n

\nIt is called the logarithms change of base formula.<\/p>\n
\nChange of Base Formula     =>     {\\tt{log}}_a b \\space {\\small{=}} \\space {\\Large{\\frac{{\\tt{log}}_c b}{{\\tt{log}}_c a}}}<\/span><\/font>\n


\nThe value of  c<\/i><\/font>  can be any value we wish, and we can see in an example why this is helpful.\n



\nExample    <\/font><\/font><\/font><\/u><\/b>\n


\n(2.1) <\/i><\/b><\/font><\/font><\/font><\/u>\n

\nEstablish the value of   {\\tt{log}}_4 9<\/span><\/font>   to 4 decimal places.\n

\nSolution<\/i>   <\/b><\/font><\/font><\/u><\/font>\n

\nNow we know we can rewrite this log in the following way.   {\\tt{log}}_4 9 \\space {\\small{=}} \\space {\\Large{\\frac{{\\tt{log}}_c 9}{{\\tt{log}}_c 4}}}<\/span><\/font>\n

\nWe just need to select a suitable value for  c<\/i><\/font>.\n

\nAs the the common logarithm and the natural logarithm both have buttons on a standard calculator. \n

\nWe can go with either    {\\tt{log}}_4 9 \\space {\\small{=}} \\space {\\Large{\\frac{{\\tt{log}}_{10} 9}{{\\tt{log}}_{10} 4}}}<\/span>     or     {\\tt{log}}_4 9 \\space {\\small{=}} \\space {\\Large{\\frac{{\\tt{log}}_e 9}{{\\tt{log}}_e 4}}}<\/span>.\n


\n{\\Large{\\frac{{\\tt{log}}_{10} 9}{{\\tt{log}}_{10} 4}}} \\space {\\small{=}} \\space 0.6309<\/span>     ,     {\\Large{\\frac{{\\tt{ln}} 9}{{\\tt{ln}} 4}}} \\space {\\small{=}} \\space 0.6309<\/span>\n


\nWe get the same result with the common and natural logarithm when using the change of base formula.\n





\n\n\n

    \n
  1. \n\nHome<\/span><\/a>\n\n<\/li>\n\u00a0\u203a\n
  2. \n\nAlgebra 2<\/span><\/a>\n\n<\/li>\n \u203a\nLogarithm Rules\n<\/ol>\n\n<\/font><\/font>\n\n\n\n
    \n\n\n\n


    \n
    Return to TOP of page<\/b> <\/font><\/a> <\/center>\n


    \n","protected":false},"excerpt":{"rendered":"

    On this Page:  1. Logarithm Rules  2. Examples  3. Change of Base Formula Logarithms and examples of working with logarithms were introduced on the logarithms page, and the exponential and logarithmic functions examples page. Here on this how to simplify logarithms page we look further at situations of manipulating and solving where logarithms are present.… Read More »Simplifying Logarithms, Logarithm Rules<br>Logarithms Change of Base Formula<\/span><\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"parent":0,"menu_order":0,"comment_status":"closed","ping_status":"closed","template":"","meta":{"neve_meta_sidebar":"","neve_meta_container":"","neve_meta_enable_content_width":"","neve_meta_content_width":0,"neve_meta_title_alignment":"","neve_meta_author_avatar":"","neve_post_elements_order":"","neve_meta_disable_header":"","neve_meta_disable_footer":"","neve_meta_disable_title":"","footnotes":""},"wf_page_folders":[18],"class_list":["post-1005","page","type-page","status-publish","hentry"],"_links":{"self":[{"href":"https:\/\/www.learnermath.com\/wp-json\/wp\/v2\/pages\/1005","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.learnermath.com\/wp-json\/wp\/v2\/pages"}],"about":[{"href":"https:\/\/www.learnermath.com\/wp-json\/wp\/v2\/types\/page"}],"author":[{"embeddable":true,"href":"https:\/\/www.learnermath.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/www.learnermath.com\/wp-json\/wp\/v2\/comments?post=1005"}],"version-history":[{"count":17,"href":"https:\/\/www.learnermath.com\/wp-json\/wp\/v2\/pages\/1005\/revisions"}],"predecessor-version":[{"id":3828,"href":"https:\/\/www.learnermath.com\/wp-json\/wp\/v2\/pages\/1005\/revisions\/3828"}],"wp:attachment":[{"href":"https:\/\/www.learnermath.com\/wp-json\/wp\/v2\/media?parent=1005"}],"wp:term":[{"taxonomy":"wf_page_folders","embeddable":true,"href":"https:\/\/www.learnermath.com\/wp-json\/wp\/v2\/wf_page_folders?post=1005"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}