Skip to content

Short Division Introduction

On this Page:
 1. Short Division Steps
 2. Examples

Similar to the case of multiplication in Math, division of numbers is usually done with the method of short division, or long division.
This page looks at how to effectively approach division sums with short division.




How to do Short Division Introduction


If we wanted to divide  248  by  2.       248 ÷ 2


248  is the DIVIDEND       ,       2  is the DIVISOR

The final answer to the division sum is the QUOTIENT.

With short division, a division sum is set up in the following way:

                   QUOTIENT
DIVISOR  DIVIDEND  



Thus for  248 ÷ 2,  we lay out as follows.
\begin{array}{r} \\[-2pt] 2 {\bf{|}} {\overline{\space 248 \space\space}} \end{array}

From here we carry out the division in steps from left to right to obtain the answer, the QUOTIENT.

1)
2  goes into  2  once with no remainder, so a  1  is placed above the  4  in the QUOTIENT section.
\begin{array}{r} 1 \space\space\space\space\space\space\\[-2pt] 2 {\bf{|}} {\overline{\space 248 \space\space}} \end{array}

2)
2  goes into  4  two times with no remainder, so next we place a  2  in the QUOTIENT above the  6 
\begin{array}{r} 12 \space\space\space\space\\[-2pt] 2 {\bf{|}} {\overline{\space 248 \space\space}} \end{array}

3)
Finally  2  goes into  8  four times, so a  4  is the last entry in the QUOTIENT, above the  8.
\begin{array}{r} 124 \space\space\\[-2pt] 2 {\bf{|}} {\overline{\space 248 \space\space}} \end{array}

We now have obtained the answer to the division sum.         248 ÷ 2 = 124






Short Division Examples



(1.1) 

740 ÷ 4 ?

Solution   
\begin{array}{r} \\[-2pt] \bf 4 {\bf{|}} {\overline{\space 740 \space\space}} \end{array}

1)
4  goes into  7  once, with a remainder of  3.
What happens here, is that the  1  goes above in the answer as usual, while the remainder  3  gets placed alongside the next number in the dividend to the right, which is  4
The effect of placing the remainder  3  below is that it turns  4  into  34 .

    \begin{array}{r} 1 \space\space\space\space\space\space\space\\[-2pt] 4 {\bf{|}} {\overline{\space 7{\tiny{3}}40 \space\space}} \end{array}

2)
Now  4  goes into  34  eight times, with a remainder of  2.
    \begin{array}{r} 1\space8 \space\space\space\space\space\\[-2pt] 4 {\bf{|}} {\overline{\space 7{\tiny{3}}4{\tiny{2}}0 \space\space}} \end{array}

3)
For the last step  4  goes into  20  exactly five times, and there is no remainder.
\begin{array}{r}     1\space8 \space5 \space\space\\[-2pt] 4 {\bf{|}} {\overline{\space 7{\tiny{3}}4{\tiny{2}}0 \space\space}} \end{array}

740 ÷ 4  =  185




(1.2) 

284 ÷ 4 ?

Solution   
\begin{array}{r} \\[-2pt] \bf 4 {\bf{|}} {\overline{\space 284 \space\space}} \end{array}

1)
4  doesn’t go into  2,  so  0  is placed above in the answer.
\begin{array}{r} 0 \space\space\space\space\space\space\\[-2pt] 4 {\bf{|}} {\overline{\space 284 \space\space}} \end{array}

2)
We now move along and think about how many times  4  goes into  28,  which is seven times, with no remainder.
\begin{array}{r} 07 \space\space\space\space\\[-2pt] 4 {\bf{|}} {\overline{\space 284 \space\space}} \end{array}

3)
Lastly  4  goes into  4  exactly once.
\begin{array}{r} 071 \space\space\\[-2pt] 4 {\bf{|}} {\overline{\space 284 \space\space}} \end{array}

284 ÷ 4  =  71





  1. Home
  2.  ›
  3. Arithmetic/Numbers
  4. › Short Division Introduction




Return to TOP of page