Skip to content

Logarithms and Exponentials Relationship
Logarithms Explained



Here we will look at exponential and logarithmic functions.
What they represent and how logarithms and exponentials relate to each other in Algebra.



Exponential Functions


If we have a function of the form    f(x) = a^x,     a > 0.

This is an exponential function.


The base number is  a,  and the exponent is  x.

If we recall:    3^2 \space {\small{=}} \space 3 \times 3 \space {\small{=}} \space 9     ,     3^3 \space {\small{=}} \space 3 \times 3 \times 3 \space {\small{=}} \space 27




Logarithmic Functions


A logarithm is a function that goes the other way from an exponential one.
It is the inverse function to the exponential function.


Such a function has the general form.    f(x) \space {\small{=}} \space{\tt{log}}_a (x)

With   a > 0 \space \space , \space \space a \space {\cancel{=}} \space 1 \space \space , \space \space x > 0.     ( We’ll explain these conditions further in the page. )


We know,     4^2 \space {\small{=}} \space 4 \times 4 \space {\small{=}} \space 16.

The base number is  4,  the argument is  x,  and the exponent is  2.

As a logarithmic function we write,    {\tt{log}}_4 (16) \space {\small{=}} \space 2.


So the result is, what does the base number  a  have to be raised to in order to get  x.

The exponential function and logarithms explained.



It’s the case that exponential and logarithmic functions are inverses of each other.
One undoes the work of the other.


   {\tt{log}}_a (a^x) \space {\small{=}} \space x         =>         a^{{\tt{log}}_a (x)} \space {\small{=}} \space x


So if we have,   f(x) \space {\small{=}} \space{\tt{log}}_4 (x).     Then,   4^{f(x)} \space {\small{=}} \space x.







Logarithms and Exponentials,
Logarithms, Base 10 and Base e



Logarithm Base 10


A logarithm with base  10  is known as a ‘common logarithm’.     \boxed{{\tt{log}}_{10} (x)}

It’s the case that the ’10’ is generally left unwritten,
but is implied/assumed.

So when we encounter,  {\tt{log}} (x).
This is assumed to be,  {\tt{log}}_{10} (x).


{\tt{log}} (100)‘   would be assumed to be   ‘{\tt{log}}_{10} (100)‘.

{\tt{log}} (100) \space {\small{=}} \space {\tt{log}}_{10} (100) \space {\small{=}} \space 2


The ‘log’ button on a calculator is the logarithm of base  10.




Logarithm Base e


A logarithm of base  e  is known as a ‘natural logarithm’.     \boxed{{\tt{log}}_{e} (x)}

This logarithm is often written  {\tt{ln}}(x),

{\tt{log}}_{e} (x) \space {\small{=}} \space {\tt{ln}} (x)

Like logarithms with base  10,  the natural logarithm also appears as a button on a calculator.


If we wanted to find the natural logarithm of  825.

We can use a calculator to establish.   {\tt{ln}}(825) \space {\small{=}} \space 6.715



For both the common logarithm and natural logarithm, it’s the case that:

10^{{\tt{log}}(x)} \space {\small{=}} \space x     and     e^{{\tt{ln}}(x)} \space {\small{=}} \space x.






Logarithms, 0, 1,
Negative Numbers and Decimals


Earlier in the page it was stated that for    f(x) \space {\small{=}} \space{\tt{log}}_a (x).

We needed   a > 0 \space \space , \space \space a \space {\cancel{=}} \space 1 \space \space , \space \space x > 0.


But why is this?
When we’re dealing with real numbers, certain issues occur when we don’t constrain the values of  a  and  x.

Let’s look at them.



Base Value:

Can’t have 0.

Having logarithms with base  0  would give us situations like the following.

{\tt{log}}_0 (2) \space {\small{=}} \space x       =>       0^x \space {\small{=}} \space 2
{\tt{log}}_0 (4) \space {\small{=}} \space x       =>       0^x \space {\small{=}} \space 4

Now  0  raised to any power is still  0,  so this base can’t occur for a logarithm.



Can’t have 1.

Having logarithms with base  1  would give us situations like the following.

{\tt{log}}_1 (2) \space {\small{=}} \space x         =>       1^x \space {\small{=}} \space 2
{\tt{log}}_1 (12) \space {\small{=}} \space x       =>       1^x \space {\small{=}} \space 12

Now  1  raised to a power is still  1,  so this base can’t occur for a logarithm.



Can’t be negative.

Having logarithms with negative base numbers would give us situations like the following.

{\tt{log}}_{{\text{--}}5} (x) \space {\small{=}} \space {\Large{\frac{1}{2}}}         =>       {\text{--}}5^{\frac{1}{2}} \space {\small{=}} \space x         =>       \sqrt{{\text{--}}5} \space {\small{=}} \space x

Now with real numbers we can’t take the root of a negative number, so this base couldn’t occur for a logarithm.




Argument:


Can’t be negative.

Having logarithms with negative argument numbers would give us situations like the following.

{\tt{log}}_{10} ({\text{--}}100) \space {\small{=}} \space x       =>       10^x \space {\small{=}} \space {\text{--}}100

The issue is that any real  x  will produce a positive result.

10^3 \space {\small{=}} \space 1000     ,     10^{{\text{--}}3} \space {\small{=}} \space {\Large{\frac{1}{1000}}}     ,     10^0 \space {\small{=}} \space 1       etc



Can’t be Zero.

Having logarithms with a zero argument would give us situations like the following.

{\tt{log}}_{10} (0) \space {\small{=}} \space x       =>       10^x \space {\small{=}} \space 0

There isn’t an x value that can satisfy this result.




Outputs and Decimals:


To conclude this logarithms explained page, the output of a logarithm can be a negative number just fine.

For example.

{\tt{log}}_{5} (0.2) \space {\small{=}} \space {\text{-}}1       =>       5^{{\text{--}}1} \space {\small{=}} \space {\Large{\frac{1}{5}}} \space {\small{=}} \space 0.2



We are also fine to use decimal numbers with logarithms, provided they satisfy the value constraints.

{\tt{log}}_{10} (14) \space {\small{=}} \space 1.146128...       =>       10^{1.146128...} \space {\small{=}} \space 14

{\tt{log}}_{10} (27) \space {\small{=}} \space 1.88649...       =>       10^{1.88649...} \space {\small{=}} \space 27





  1. Home
  2.  ›
  3. Algebra 2
  4. › Logarithms and Exponentials




Return to TOP of page